Self-assembled three dimensional network designs for soft electronics
نویسندگان
چکیده
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.
منابع مشابه
Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs
Future nanoscale electronics built up from an Avogadro number of components need efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the networks-on-chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regu...
متن کاملMolecular Gradients on Surfaces: Formation and Applications in Soft Condensed Matter Science
Recent advances in the field of self-assembly have led to the development of a plethora of new technologies based on soft lithography (see Self-assembled Monolayer Films: Microcontact Printing; Thiol-based Selfassembled Monolayers: Formation and Organization; Thiol-based Self-assembled monolayers, Structure of) that enable alternative ways of creating twoand three-dimensional chemical patterns ...
متن کاملSelf-assembly of the simple cubic lattice with an isotropic potential.
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman, Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classica...
متن کاملSynthesis of Two Compounds with Self-Assembled Monolayer Properties: Riboflavin 2', 3', 4' , 5' Tetra Octadecanoate & Bis (Phosphatidyl Ethanol) Protoporphyrin IX Amide
Riboflavin and protoporphyrin IX are two molecules that participate in oxidation and reduction reactions in the living cell. Changing some functional groups of riboflavin and protoporphyrin IX can provide compounds with self-assembled monolayer properties with wide applications in designing the molecular electronic devices. In this study, the amphiphilic structure of riboflavin and protopor...
متن کاملMolecular Dynamics of Self-Assembled Monolayer Formation in Soft Nanolithgoraphy
Molecular dynamics simulation is performed to study the growth mechanism of self-assembled monolayer in the AFM tip-assisted soft nanolithography such as in dip-pen nanolithography. We investigate how the droplet created around the tip spreads out to become a monolayer on the substrate. The previous diffusion model assumes that molecules diffuse on top of molecules already adsorbed on the subst...
متن کامل